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a b s t r a c t

Extreme learning machine (ELM) has gained increasing attention for its computation feasibility on
various applications. However, the previous generalization analysis of ELM relies on the independent
and identically distributed (i.i.d) samples. In this paper, we go far beyond this restriction by investigating
the generalization bound of the ELM classification associated with the uniform ergodic Markov chains (u.
e.M.c) samples. The upper bound of the misclassification error is estimated for the ELM classification
showing that the satisfactory learning rate can be achieved even for the dependent samples. Empirical
evaluations on real-word datasets are provided to compare the predictive performance of ELM with
independent and Markov sampling.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Extreme learning machine (ELM) can be considered as a single-
hidden layer feedforward neural networks (FNNs), where the out-
put weights can be adjusted while the input weights and the
threshold of hidden layer are fixed randomly [6,9]. This idea of
training FNNs is different from the traditional neural network
theories and is related with the discussions in [13,14]. Because only
the Moore–Penrose generalized inverse is necessary to be calcu-
lated, the original ELM and its variations have shown the computa-
tion feasibility in the various applications, see, e.g., [2,4,5,11,23].
With the rapid development of the ELM-based applications, there
are some theoretical works for its universal consistency in [25] and
generalization ability in [10,19,2]. In particular, the generalization
bounds of ELM are established in [10], which demonstrate that ELM
can achieve the same learning rates as FNNs under mild conditions.
Moreover, analysis of the generalization ability is extended to the
magnitude-preserving regularization ranking in [2]. Although these
works enrich our understanding of ELM, they just consider the
setting where the samples are drawn independently from an
unknown distribution. In the real-world applications, the indepen-
dence of samples is difficult to be verified and does not hold true

usually [20,16,26,28]. Therefore, it is important to further investi-
gate the generalization ability of ELM with dependent samples.

Recently, the Markov chain samples have attracted increasing
attention in statistical learning theory. In [17], the learning rate is
estimated for the online algorithm with the Markov chains. For the
uniformly ergodic Markov chains (u.e.M.c), the generalization bounds
are established for the regularized regression in [27] and support
vector machines classification in [21,22]. Despite the rapid theoretical
progresses, there is no any generalization analysis for the regularized
ELM with dependent samples. To fill the theoretical gap, in this
paper, we investigate the generalization ability of the ELM classifica-
tion with the Markov samples. The derived results on theory and
experiments demonstrate that the satisfying generalization perfor-
mance can be reached by the ELM with Markov sampling.

The rest of this paper is organized as follows. ELM and some
necessary definitions are introduced in Section 2. The main result
on generalization analysis is presented for the ELM-based classi-
fication in Section 3. Some empirical examples are reported in
Section 4. Finally, we conclude this paper in Section 5.

2. Preliminaries

Let XARd be the input space and Y ¼ f�1;1g. The training
samples z¼ fzigmi ¼ 1 ¼ fðxi; yiÞgmi ¼ 1AZm are drawn from a probabil-
ity distribution ρ on Z ¼ X � Y . Given z, the main goal of the cla-
ssification algorithm is searching a predictor f z : X-Y such that
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the misclassification rate is as low as possible. In learning theory,
the misclassification risk is defined as

Rðf Þ ¼
Z
Z
Ifya f ðxÞg dρ

and the Bayes risk is denoted by

Rn ¼min
Z
Z
Ifya f ðxÞg dρ:

For the regression function f ρ ¼
R
Yy dρðy∣xÞ, we know that Rn ¼

Rðf cÞ, where f c ¼ signðf ρÞ, and signftg ¼ 1 if tZ0 and signftg ¼ �1
otherwise. The performance of a classifier is measured by the
excess risk Rðf Þ�Rðf cÞ. Since the indictor loss I is nonconvex and
noncontinuous, we usually use the convex loss to replace it. In
original ELM, the least square loss ℓðf ; zÞ ¼ ðy� f ðxÞÞ2 is used.

Denote α¼ ðα1;α2;…;αnÞT ARn�l in which αi is generated
independently and identically according to a uniform distribution
μ on ½0;1�l. In ELM, the hypothesis space is defined as

Mn ¼ f nðx;α;βÞ ¼
Xn
i ¼ 1

βiϕðαi; xÞ : xAX;β¼ ðβ1;…;βnÞT ARn

( )
;

ð1Þ
where ϕ : Rl � Rd-R is an activation function. The activation
functions include the sigmoid function, Gaussian function, hyper-
bolic tangent function, multiquadric function and Fourier series
[7,8,5].

For f AMn, define

J f J2ℓ2
¼ inf

Xn
i ¼ 1

β2
i : f ¼

Xn
i ¼ 1

βiϕðαi; �Þ
( )

Under the Tikhonov regularization scheme, the regularized
ELM (see [5,6]) can be formulated as

f z;λ ¼ arg min
f AMn

fEzðf ÞþλJ f J2ℓ2 g; ð2Þ

where

Ezðf Þ ¼
1
m

Xm
i ¼ 1

ðyi� f ðxiÞÞ2

is the empirical risk and λ40 is the regularization parameter.
The regularized ELM can be rewritten as the optimization

scheme

βn ¼ arg min
β

1
m
JHβ�Y J22þλJβJ22

� �
;

where Y ¼ ðy1; y2;…; ymÞT and

H ¼

ϕðα1; x1Þ … ϕðαn; x1Þ
…

⋮ … ⋮
…

ϕðα1; xmÞ … ϕðαn; xmÞ

0BBBBBB@

1CCCCCCA
m�n

:

It is easy to verify that

βn ¼ ðHTHþλmIÞ�1HTY :

The expected convex risk, associated with the least square loss,
is defined as

Eðf Þ ¼
Z
Z
ðy� f ðxÞÞÞ2 dρðx; yÞ:

Let L2ρX
be the Hilbert space consisted all square integrable fun-

ctions on X, with norm J � Jρ. For every f AL2ρX
, we have Eðf Þ�

Eðf ρÞ ¼ J f � f ρ J2ρ. From [24], we know

Rðf Þ�Rðf cÞr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðf Þ�Eðf ρÞ

q
¼ J f � f ρ Jρ:

This paper focuses on bounding the excess risk Eðf Þ�Eðf ρÞ to
measure the generalization ability of ELM. The current analysis is
based on the u.e.M.c samples different from the previous works in
[10,19].

Now we recall some preliminary definition and properties of
the u.e.M.c [12,18,22]. Let ðZ;SÞ be a measurable space. We call
fZtgtZ1 is a Markov chain, if the sequence fZtgtZ1 is randomly
generated and its transition probability measure satisfies

PkðA∣ZiÞ ¼ ProbfZkþ iAA∣Zj; jo i; Zi ¼ zig: ð3Þ
Starting from the initial state zi at time i, the probability, that the
state zkþ i will belong to set A after k-steps, is denoted by PkðA∣ZiÞ.
Hence, if k¼1, we have P1ðA∣ZiÞ ¼ ProbfZiþ1AA∣Zj; jo i; Zi ¼ zig,
which is independent of the values of Zjðjo iÞ. For the given
probabilities p1 and p2, the total variance distance is defined as
Jp1�p2 JTV ¼ supAAS ∣p1ðAÞ�p2ðAÞ∣. The definition of u.e.M.c can
be described as below (see [20]).

Definition 1. A Markov chain fZtgtZ1 is said to be uniformly
ergodic if

JPkð�∣zÞ�πð�ÞJTV rγτk; ð4Þ
for some 0oγo1 and 0oτo1. Here kZ1, kAN and πð�Þ is the
stationary distribution of fZtgtZ1.

From [12], we know that the transition probability PkðA∣ZiÞ of
the u.e.M.c satisfies the Doeblin condition as below.

Proposition 1. Let fZtgtZ1 be a Markov chain with the transition
probability measure Pkð�∣�Þ and let μ be a specific nonnegative measure
with nonzero mass μ0. Assume that, for some integer t and all measurable
sets A, PtðA∣zÞrμðAÞ; 8zAZ. Then, we have

JPkð�∣zÞ�Pkð�∣z0ÞJTV r2ð1�μ0Þk=t ; 8kAN; z; z0AZ: ð5Þ

3. Generalization bound

To evaluate the generalization ability of ELM, we should est-
imate the approximation between f z;λ and f ρ. That is to say, we
should estimate the excess convex risk Eðf z;λÞ�Eðf ρÞ.
Proposition 2. For any zAZm and f z;λ defined in (2), there holds

Eðf z;λÞ�Eðf ρÞrS1þS2; ð6Þ
where

S1 ¼ Eðf z;λÞ�Eðf ρÞ�ðEzðf z;λÞ�Ezðf ρÞÞ

and

S2 ¼ Ezðf z;λÞ�Ezðf ρÞþλJ f z;λ J
2
ℓ2
:

Definition 2. For a subset G of a metric space and any ϵ40, the
covering number N ðG; ϵÞ is defined to be the smallest integer lAN

such that there exist l disks with radius ϵ and centers in G covering
G.

For any given R40, we define a class of functions:

BR ¼ ff AMn : J f J2ℓ2
rR2g:

The covering number of BR is estimated in [3].

Lemma 1. For any R40, ϵ40, there holds

logN ðBR; ϵÞrn � log 4R
ϵ

� �
: ð7Þ

Denote JΓ J ¼
ffiffiffi
2

p
=ð1�ð1�μ0Þ1=2tÞ, where μ0 and t are defined

in Proposition 1. In fact, JΓ J measures the “L2-dependence” of the
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random samples (see [18]). In order to estimate the generalization
bound, we introduce the following lemma established in [22].

Lemma 2. Let G be a countable class of bounded measurable fun-
ctions and let z¼ fzigmi ¼ 1 be a set of u.e.M.c samples. For some C40,
there exists 0rgðzÞrC for all gAG; zAZ. Then, for any ϵ40, we
have

ProbzAZm
1
m

Xm
i ¼ 1

gðziÞ�EðgÞ
�����

�����Zϵ

( )
r2 exp

�mϵ2

56C JΓ J2EðgÞ

� �
:

As shown in [22], the following lemma can be deduced by
Lemma 2. For completeness, we presented its proof in Appendix.

Lemma 3. Let G be a countable class of bounded measurable fun-
ctions and let z¼ fzigmi ¼ 1 be a set of u.e.M.c samples. For all gA
G; zAZ, assume that 0rgðzÞrC for some C40. Then, for any ϵ40,
there holds that

ProbzAZm sup
gAG

1
m
Pm

i ¼ 1 gðziÞ�EðgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðgÞþϵ

p Z4
ffiffiffi
ϵ

p
8><>:

9>=>;rN ðG; ϵÞexp �mϵ
56C JΓ J2
n o

:

Now, we present the main result on the excess risk
Eðf z;λÞ�Eðf ρÞ.
Theorem 1. Assume that z¼ fzigmi ¼ 1 is a set of u.e.M.c samples and
JϕJ1rκ. For any 0oδo1, there holds

EρmEμn ðJ f z; λ� f ρ J
2
ρÞr

Cn log ðm=λÞ
m

þ2Eμn inf
f AMn

Z
X
ðf ðxÞ� f ρðxÞÞ2 dρþλJ f J2ℓ2

� �
with confidence at least 1�δ, where C ¼ 224ðκþ

ffiffiffi
λ

p
Þðκþ

3
ffiffiffi
λ

p
ÞJΓ J2=λ.

Proof. From the Proposition 2, we conclude that

Emρ E
n
μðJ f z;λ� f ρ J

2
ρÞrEmρ E

n
μðEðf z;λÞ�Eðf ρÞ�ðEzðf z;λÞ�Ezðf ρÞÞÞ

þEmρ E
n
μðEzðf z;λÞ�Ezðf ρÞþλJ f z;λ J

2
ℓ2
Þ

¼ Emρ E
n
μðS1ÞþEmρ E

n
μðS2Þ; ð8Þ

Firsty, we estimate S1. Set

GR ¼ fðy� f ðxÞÞ2�ðy� f ρðxÞÞ2 : f ABRg;
for any gAGR, there exists f ABR such that

gðzÞ ¼ ðy� f ðxÞÞ2�ðy� f ρðxÞÞ2:

We can observe that

Eρm ðgÞ ¼ Eðf Þ�Eðf ρÞZ0

and

1
m

Xm
i ¼ 1

gðziÞ ¼ Ezðf Þ�Ezðf ρÞ:

Since JϕJ1rκ, from Cauchy–Schwarz inequality, we have

∣f ðxÞ∣¼
Xn
i ¼ 1

βiϕðαi; xiÞ
�����

�����r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i ¼ 1

β2
i

vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i ¼ 1

ϕ2

vuut rκR:

Then we deduce that

jgðzÞj ¼ j ðy� f ðxÞÞ2�ðy� f ρðxÞÞ2 jr ðκRþ1ÞðκRþ3Þ:

By Lemma 3, we have that

ProbzAZm sup
f ABR

Eðf Þ�Ezðf Þ�ðEðf ρÞ�Ezðf ρÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðf Þ�Eðf ρÞþϵ

q Z4
ffiffiffi
ϵ

p
8><>:

9>=>;
¼ ProbzAZm sup

f ABR

EðgÞ� 1
m
Pm

i ¼ 1 gðziÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðgÞþϵ

p Z4
ffiffiffi
ϵ

p
8><>:

9>=>;
rN ðGR; ϵÞexp

�mϵ
56ðκRþ1ÞðκRþ3ÞJΓ J2

� �
: ð9Þ

For any g1; g2AGR; zAZ, there exists that

jg1ðzÞ�g2ðzÞjr2ðκRþ1ÞJ f 1� f 2 J1:

Therefore, for any ϵ40, an ϵ=2ðκRþ1Þ-covering of BR can pro-
vide ϵ-covering of GR. Accordingly,

N ðGR; ϵÞrN BR;
8RðκRþ1Þ

ϵ

� �
:

From Lemma 1, we have

logN ðGR; ϵÞrn � log 8RðκRþ1Þ
ϵ

� �
:

Then, (9) tells us that

ProbzAZm sup
f ABR

Eðf Þ�Ezðf Þ�ðEðf ρÞ�Ezðf ρÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðf Þ�Eðf ρÞþϵ

q Z
ffiffiffi
ϵ

p
8><>:

9>=>;
rN ðGR; ϵÞexp

�mϵ
56ðκRþ1ÞðκRþ3ÞJΓ J2

� �
rexp n log

8RðκRþ1Þ
ϵ

� mϵ
56ðκRþ1ÞðκRþ3ÞJΓ J2

� �
: ð10Þ

Sinceffiffiffi
ϵ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðf Þ�Eðf ρÞþϵ

q
r1

2 ðEðf Þ�Eðf ρÞÞþϵ;

there exists that

sup
f ABR

ðEðf Þ�Eðf ρÞÞ�ðEzðf Þ�Ezðf ρÞÞ
n o

r1
2 ðEðf Þ�Eðf ρÞÞþϵ

with confidence at least

1�exp n log
8RðκRþ1Þ

ϵ
� mϵ
56ðκRþ1ÞðκRþ3ÞJΓ J2

� �
:

Hence,

ProbzAZm sup
f ABR

ðEðf Þ�Eðf ρÞÞ�2ðEzðf Þ�Ezðf ρÞÞ
n o

rϵ

( )

Z1�exp n log
16RðκRþ1Þ

ϵ
� mϵ
112ðκRþ1ÞðκRþ3ÞJΓ J2

� �
:

From the definition of f z;λ, we can deduce that

J f z;λ J
2
ℓ2

¼
Xn
i ¼ 1

∣αi∣2r
1
λ
:

Hence, f z;λABR with R¼ 1=
ffiffiffi
λ

p
.

Setting

K¼ fEðf Þ�Eðf ρÞ�2ðEzðf Þ�Ezðf ρÞÞg;

then we have

Eðf Þ�Eðf ρÞrKþ2S2: ð11Þ

P. Yuan et al. / Neurocomputing 167 (2015) 528–534530



For any tZ16ðκþ
ffiffiffi
λ

p
Þ=m, we conclude that

Emρ ðKÞ ¼
Z þ1

0
ProbzAZm Eðf Þ�Eðf ρÞ�2ðEzðf Þ�Ezðf ρÞÞrϵ

n o
dϵ

r tþ
Z þ1

t
exp n log

16ðκþ
ffiffiffi
λ

p
Þ

λ
ϵ� λmϵ

112ðκþ
ffiffiffi
λ

p
Þðκþ3

ffiffiffi
λ

p
ÞJΓ J2

( )
dϵ

r tþexp � λmt

112ðκþ
ffiffiffi
λ

p
Þðκþ3

ffiffiffi
λ

p
ÞJΓ J2

( )Z þ1

t

16ðκþ
ffiffiffi
λ

p
Þ

λϵ

 !n

dϵ

rtþexp � λmt

112ðκþ
ffiffiffi
λ

p
Þðκþ3

ffiffiffi
λ

p
ÞJΓ J2

( )
16ðκþ

ffiffiffi
λ

p
Þ

λt

 !n

t

rtþλ�n exp � λmt

112ðκþ
ffiffiffi
λ

p
Þðκþ3

ffiffiffi
λ

p
ÞJΓ J2

( )
mnt:

Setting t ¼ 112nðκþ
ffiffiffi
λ

p
Þðκþ3

ffiffiffi
λ

p
ÞJΓ J2 log m=λm,we have

Eρm ðKÞr2t ¼ 224nðκþ
ffiffiffi
λ

p
Þðκþ3

ffiffiffi
λ

p
ÞJΓ J2log ðm=λÞ

λm
:

Now, we give the upper bound of Emρ ðS2Þ:

Emρ ðS2Þ ¼ Emρ
1
m

Xm
i ¼ 1

ðyi� f z;λðxiÞÞ2�
1
m

Xm
i ¼ 1

ðyi� f ρðxiÞÞ2þλJ f z;λ J
2
ℓ2

 !

¼ Emρ inf
f AMn

1
m

Xm
i ¼ 1

ðyi� f z;λðxiÞÞ2�
1
m

Xm
i ¼ 1

ðyi� f ρðxiÞÞ2þλJ f J2ℓ2

 !( )

r inf
f AMn

Emρ ðy� f ðxÞÞ2�Emρ ðy� f ρðxÞÞ2þλJ f J2ℓ2
n o

¼ inf
f AMn

Z
X
ðf ðxÞ� f ρðxÞÞ2 dρþλJ f J2ℓ2

� �
: ð12Þ

The desired result follows by combining the inequations (11)
and (12).

From Theorem 1, we know that the excess convex risk
EρmEμn ðEðf z;λÞ�Eðf ρÞÞ depends on the sample number m, the net
number n, the regularized parameter λ, and the hypothesis space
Mn. The generalization bound for ELM with the u.e.M.c samples is
consistent with the result in [10] for the i.i.d samples.

Corollary 1. Under the condition and notations in Theorem 1, we
have

Emρ E
n
μðRðf z; λÞ�Rðf cÞÞ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cn log ðm=λÞ

m

r
þ2Enμ inf

f AMn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
X
ðf ðxÞ� f ρðxÞÞ2 dρþλJ f J2ℓ2

� �s
:

The learning rate Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log m=m

p
Þ can be achieved when the

optional λ is selected and inf f AMn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRXðf ðxÞ� f ρðxÞÞ2

q
dρþλJ

f J2ℓ2
ÞrCn log m=m. This learning rate is the same with the regular-

ized ELM based on the i.i.d samples. To the best of our knowledge, this
is the first touch on the convergence rate for the ELM-based
classification with dependent samples.

4. Empirical evaluations

To better verify the theoretical analysis of ELM with the Markov
chains, we evaluate its performance on some datasets. Here, we
generate the u.e.M.c samples by the sampling algorithm in Table 1.
In fact, this sampling algorithm has been used for learning algo-
rithms in [27,21,22].

The UCI datasets are used to evaluate ELM and their character-
istics are summarized in Table 2. The experiment can be divided
into three steps: firstly, the training set Z0 with m samples is

Table 1
Markov sampling algorithm.

Step
1:

Draw the training samples z¼ fðxi; yiÞ; i¼ 1;2;…;N1g randomly from dataset D≔fðxi; yiÞ∣xiARd ; yiAf�1;1gg. Use ELM to train the N1 samples and obtain a

predictor bf . Set mþ ¼ 0, m� ¼ 0 and k¼0.
Step

2:
Draw a sample from D randomly, and denote it as the current sample zt. Let mþ ¼mþ þ1 if the label of zt is 1 and m� ¼m� þ1 otherwise.

Step
3:

Draw another sample from D randomly, and denote it as the candidate sample zn .

Step
4: Calculate the ratio γ of e�ℓðbf ;zÞ at the candidate sample zn and the current sample zt, γ ¼

e�ℓðbf ;zn Þ
e�ℓðbf ;zt Þ .

Step5: If γZP, accept the candidate sample zn with probability γ. If there are k candidate samples zn cannot be accepted, accept the kth candidate sample with
probability γ. Then set ztþ1 ¼ zn , mþ ¼mþ þ1 if the label of ztþ1 is 1 and m� ¼m� þ1 otherwise.

Step
6:

If mþ om=2 or m� om=2, return to Step 3, else stop it.

Table 2
Specifications of datasets.

Datasets Attributes Training size Testing size

Waveform 21 2500 2500
Abalone 7 3133 1044
Magic 10 9510 9510
Letter 16 15,000 5000
Shuttle 9 10,000 4500

Table 3
Misclassification rate (MR) for 1000 training samples.

Datasets MR(i.i.d.) MR(Markov)

Waveform 0.141070.0076 0.136470.0062
Abalone 0.206870.0041 0.208770.0030
Magic 0.195670.0069 0.194670.0053
Letter 0.179170.0078 0.177970.0072
Shuttle 0.014170.0193 0.011470.0028

Table 4
Misclassification rate (MR) for 1500 training samples.

Datasets MR(i.i.d.) MR(Markov)

Waveform 0.118470.0042 0.116470.0029
Abalone 0.201670.0038 0.205770.0029
Magic 0.184270.0282 0.178270.0048
Letter 0.165870.0057 0.158770.0034
Shuttle 0.009670.0037 0.008270.0018
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generated by the Markov sampling algorithm in [21,22]; secondly,
we consider the combination of the square function and Gaussian
function as the activation function of ELM [15]; finally, we train
ELM on Z0 and evaluate its performance on the test set.

We conduct the experiment for 50 times and the average
misclassification rates are presented in Tables 3 and 4. The results
tell us that ELM with Markov sampling can provide the competi-
tive prediction according to the misclassification rates and stan-
dard deviations. We also evaluate the ELM with Markov sampling
for different numbers of training samples in Fig. 1, which shown
that the misclassification rate will decrease with the increasing
training samples. This empirical result is consistent with the
theoretical analysis in Theorem 1.

In order to better understand the efficiency of ELM, we also present
several experiments to compare the standard deviations with the
independent and Markov sampling methods. Figs. 2, 3, 4, and 5 report
these experimental results for different training numbers on Waveform,
Abalone, Magic, and Shuttle datasets. From these figures, we can find
that the standard deviations of ELM with Markov sampling are usually
smaller than ELMwith i.i.d samples. That is to say, the Markov sampling
usually can improve the stability of ELM with i.i.d samples.

Fig. 1. Misclassification rates for Waveform, Abalone, Magic, and Letter with
different training samples.

Fig. 2. Standard deviations for Waveform with m¼ 1000 (left) and m¼ 1500 (right).

Fig. 3. Standard deviations for Abalone with m¼ 1000 (left) and m¼ 1500 (right).
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5. Conclusion

In this paper, we have investigated the generalization ability of
ELM with the Markov chain samples. The generalization bound of
ELM has been established and some empirical evaluations have
been provided. In particular, the learning rate derived here is the
same as the previous work for the i.i.d samples. Along the line of
the present work, some subjects deserve to further study, e.g., the
generalization bounds of semi-supervised and unsupervised ELMs
in [4] and the generalization analysis for the sparse ELMs in [1].
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Appendix

Proof of Lemma 3. Firstly, denote J ¼N ðG; ϵÞ and consider fDjgJj ¼ 1
as a cover of G. Here, the balls Dj ¼ fgAG : Jg�gj J1rϵg. Then, for
any gAG, there is gj such that Jg�gj Jrϵ. Therefore, we have

∣EðgÞ�EðgjÞ∣r Jg�gj Jrϵ

and

1
m

Xm
i ¼ 1

gðziÞ�
1
m

Xm
i ¼ 1

gjðziÞ
�����

�����r Jg�gj Jrϵ:

Then, there exists

∣EðgÞ�EðgjÞ∣=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðgÞþϵ

p
rϵ

and

1
m

Xm
i ¼ 1

gðziÞ�
1
m

Xm
i ¼ 1

gjðziÞ
�����

����� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðgÞþϵ

p
rϵ:

.

Fig. 4. Standard deviations for Magic with m¼ 1000 (left) and m¼ 1500 (right).

Fig. 5. Standard deviations for Shuttle with m¼ 1000 (left) and m¼ 1500 (right).
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Secondly, from Lemma 2, for any ϵ40, we have

Prob
EðgÞ� 1

m
Pm

i ¼ 1 gðziÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðgÞþϵ

p Z
ffiffiffi
ϵ

p
8><>:

9>=>;rexp
�mϵ

56C JΓ J2
n o

: ð13Þ

Then for any gjAG, we have

Prob
EðgjÞ�

1
m
Pm

i ¼ 1 gjðziÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðgjÞþϵ

q Z
ffiffiffi
ϵ

p
8><>:

9>=>;rexp
�mϵ

56C JΓ J2
n o

:

Lastly, for ∣EðgÞ�EðgjÞ∣rϵ, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðgjÞþϵ

q
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðgÞþϵ

p
.

Therefore, there holds

Prob sup
gAG
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m
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